Seminar

The seminar of OBELIX team is currently held on thursdays 11:30 am, every two weeks, at the IRISA lab, Tohannic campus, room D106 (bat. ENSIBS). Usually, the presentation lasts 30 min and is followed by a discussion with the team.

The seminar is coordinated by Chloé Friguet.

Previous seminars

2019  2019-2020

Upcoming seminars (2019-2020)


  • Date: November, 25 (monday, 9h30)
  • Room : Amphi. Yves Coppens
  • Speaker: Jamila MIFDAL (IRISA Obelix and LMBA, Univ. Bretagne-Sud)
  • Title: Application of optimal transport and non local methods to hyperspectral and multispectral image fusion (PhD defense)
  • Abstract: The world we live in is constantly under observation. Many areas such as offshore zones, deserts, agricultural land and cities are monitored. This monitoring is done throughout remote sensing satellites or cameras mounted on aircrafts. However, because of many technological and financial constraints, the development of imaging sensors with high accuracy is limited. Therefore, solutions such as multi-sensor data fusion overcome the different limitations and produce images with high quality.This thesis is about hyperspectral and multispectral image fusion. A hyperspectral image (HS) has a high spectral resolution and a low spatial resolution, whereas a multispectral image (MS) has a high spatial resolution and a low spectral resolution. The goal is the combination of the relevant information contained in each image into one final high resolution one.In this dissertation various methods for dealing with hyperspectral and multispectral image fusion are presented. The first part of the thesis uses tools from the optimal transport theory namely the regularized Wasserstein distances. The fusion problem is thus modeled as the minimization of the sum of two regularized Wasserstein distances. In the second part of this thesis, the hyperspectral and the multispectral fusion problem is presented differently. The latter is modeled as the minimization of four energy terms including a non local term. Experiments were conducted on multiple datasets and the fusion was assessed visually and quantitatively for both fusion techniques.The performance of both models compares favorably with the state-of-the-art methods.

  • Date: November, 25 (monday, 14h30)
  • Room : salle B133 bât. Yves Coppens (LMBA)
  • Speaker: Julie Delon (Univ. Paris Descartes, IUF)
  • Title: Transport optimal entre mélanges de gaussiennes
  • Abstract: Les modèles de mélanges de gaussiennes sont très utilisés en statistique, ces modèles s’avérant notamment utiles lorsque l’on souhaite représenter des données réelles. Le transport optimal peut servir à calculer des distances entre de tels mélanges ou à les interpoler, mais les barycentres ainsi obtenus ne conservent généralement pas la propriété d’être un mélange de gaussiennes. Dans cet exposé, nous introduirons une distance de type Wasserstein définie en restreignant l’ensemble des mesures de couplage à des mélanges de gaussiennes. On dérivera une formulation discrète très simple de la distance correspondante, formulation qui la rend bien adaptée aux problèmes en grande dimension. Nous étudierons également la formulation multimarginales du même problème. L’exposé sera illustré par des exemples d’applications en traitement ou édition d’images.

    • Date: December, 12
    • Room : D106
    • Speaker:
    • Title:
    • Abstract:

    • Date: January, 16
    • Room : D106
    • Speaker:
    • Title:
    • Abstract:

    • Date: January, 30
    • Room : D106
    • Speaker:
    • Title:
    • Abstract:

    • Date: February, 13
    • Room : D106
    • Speaker:
    • Title:
    • Abstract:

    • Date: March, 12
    • Room : D106
    • Speaker:
    • Title:
    • Abstract:

    • Date: April, 9
    • Room : D106
    • Speaker:
    • Title:
    • Abstract:

    • Date: June, 4
    • Room : D106
    • Speaker:
    • Title:
    • Abstract:

    • Date: June, 22-26
    • Room : Campus de Tohannic, Vannes (bat. DSEG)
    • Title: Conférences jointes sur l’Apprentissage automatique (CAp) – Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP)

Comments are closed.